ARTERIAL & VENOUS BLOOD FLOW

Jonas Addae
Medical Sciences, UWI

LECTURE OUTLINE

I. Circulatory system: Structure vs Function

II. Determinants of blood flow & resistance

III. Determinants of blood pressure

IV. Venous blood flow
Total Blood Volume: about 5.5 L

LECTURE OUTLINE

I. Circulatory system: Structure vs Function

II. Determinants of blood flow & resistance

III. Determinants of blood pressure

IV. Venous blood flow
BLOOD FLOW

FLOW (Q cm3/s) = $\Delta P / R$

RESISTANCE (R) = $\Delta P / Q$

ΔP = Pressure Difference between the two ends of the vessel

Fluid Viscosity vs Density

- Viscosity describes a fluid's internal resistance to flow. (i.e. measure of friction between adjacent layers of fluid)
 - Water is "thin" (low viscosity)
 - Vegetable oil is "thick" (high viscosity)

- Density of fluid = Mass/Volume
 - Density of water = 1 g/cm3
 - Density of vegetable oil = 0.9 g/cm3
DETERMINANTS OF RESISTANCE
(POISSEUILLE’S LAW)

- **WHEN:**
 1. **TUBE** = CYLINDRICAL
 2. **FLUID** = NEWTONIAN (i.e. homogenous, without suspended particles / cells) e.g. Water
 3. **FLOW** = STEADY (NON-PULSATILE) & LAMINAR

- \[R = \frac{8 \eta l}{\pi r^4} \]
- \[Q = \frac{\Delta P}{R} \]
- \[Q = \frac{\Delta P \pi r^4}{8 \eta l} \]

DETERMINANTS OF TURBULENT FLOW

- **FLUID VISCOSITY** (\(\eta \))
- **FLUID DENSTY** (\(\rho \))
- **VESSEL DIAMETER** (\(D \))
- **VELOCITY OF MOVEMENT** (\(v \text{ cm/s} \))

- **REYNOLD’S No. (Nr)** = \(\frac{\rho D v}{\eta} \)
 - \(Nr < 2000 \rightarrow \text{LAMINAR FLOW (cm}^3/\text{s)} \)
 - \(Nr > 3000 \rightarrow \text{TURBULENT FLOW} \rightarrow \text{MURMUR} \)

- Severe anaemia causes murmur \(\rightarrow \) low viscosity,
- Valve stenosis and atherosclerosis cause murmur \(\leftrightarrow \) increase in velocity \(> \) decrease in diameter
LECTURE OUTLINE

I. Circulatory system: Structure vs Function

II. Determinants of blood flow & resistance

III. Determinants of blood pressure

IV. Venous blood flow

DETERMINANTS OF BLOOD PRESSURE

• MEAN ARTERIAL PRESSURE (MAP) = \(CO \times TPR \)

• MAP = DP + \(\frac{1}{3} \) PULSE PRESSURE (SP - DP)

• MAP = \(\frac{2}{3} \) DP + \(\frac{1}{3} \) SP

(e.g. BP = 120/90 → MAP = 100 mmHg)
Intravascular pressure varies along the vascular tree

Note: BP values in Pulmonary Circulation are much lower than those in the Systemic Circulation

WINDKESSEL EFFECT OF AORTA & ARTERIES facilitates uninterrupted blood flow in vessels

<table>
<thead>
<tr>
<th></th>
<th>ARTERIES</th>
<th>ARTERIOLES</th>
<th>CAPILLARIES</th>
<th>VENULES</th>
<th>VEINS</th>
</tr>
</thead>
<tbody>
<tr>
<td>WALL</td>
<td>Muscular</td>
<td>Muscular</td>
<td>Endothelial</td>
<td>Non-muscular</td>
<td>Slightly muscular</td>
</tr>
<tr>
<td>% BLOOD</td>
<td>15</td>
<td>5</td>
<td>65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAP</td>
<td>100</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>> 2</td>
</tr>
<tr>
<td>TOTAL X-S AREA</td>
<td>Smallest</td>
<td>Largest</td>
<td>Smallest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLOOD VELOCITY</td>
<td>Fastest</td>
<td>Slowest</td>
<td>Fast</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Blood Volume: about 5.5 L
FACTORS AFFECTING BLOOD PRESSURE
(BP = CO X TPR)

• RESISTANCE TO BLOOD FLOW (TPR)
 – VESSEL DIAMETER (decreases with atherosclerosis, excitable vessel smooth muscle, diminished NO effect)
 – BLOOD VISCOSITY (increases with blood haematocrit)
 – VESSEL LENGTH (increases with obesity)
 – VESSEL ELASTICITY (decreases with age & arterosclerosis)

• CARDIAC OUTPUT (CO)
 – BLOOD VOLUME (increases with ↑salt intake & retention)
 – HEART RATE (increases with symp. stimulation e.g. stress)
 – STROKE VOLUME (increases with ↑salt intake & retention)

Posture affects transmural arterial pressure but not the perfusion pressure

Modified from:
Dr. D. Penney;
www.coheadquarters.com/PennLibr
AUTOREGULATION OF BLOOD FLOW IN AN ORGAN

• FLOW (Q) cm³/s = Δ P / R

• However, for a particular organ, increasing MAP →
 – No change in blood flow (Autoregulation)
 • when MAP is 60 - 140 mmHg
 • due to automatic increase in vessel resistance
 – ↑ blood flow when MAP < 60 mmHg
 – ↑ blood flow when MAP > 140 mmHg

LECTURE OUTLINE

I. Circulatory system: Structure vs Function

II. Determinants of blood flow & resistance

III. Determinants of blood pressure

IV. Venous blood flow
VENOUS CIRCULATION

- Veins are compliant, low-resistance vessels that act as blood reservoirs.
- Compliance of veins $\approx 20x$ that of arteries.
- Veins hold 60 - 80% of the total blood volume
 - If blood is added or removed from the CVS the venous volume will change far more than the arterial volume
- Compliance is greatest in splanchnic and cutaneous veins and least in skeletal muscle
COMPLIANCE vs DISTENSIBILITY

• Vascular Compliance $= \frac{\Delta V}{\Delta P}$

• Vascular Distensibility $= \frac{\Delta V}{\Delta P} \times P$

 $= \text{Compliance} \times P$

<table>
<thead>
<tr>
<th>SYSTEMIC CIRCULATORY SYSTEM: STRUCTURE vs FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARTERIES</td>
</tr>
<tr>
<td>WALL</td>
</tr>
<tr>
<td>% BLOOD</td>
</tr>
<tr>
<td>MAP</td>
</tr>
<tr>
<td>TOTAL X-S AREA</td>
</tr>
<tr>
<td>BLOOD VELOCITY</td>
</tr>
</tbody>
</table>

Total Blood Volume: about 5.5 L
DETERMINANTS OF VENOUS RETURN

- Cardiac pumping
- Skeletal muscle pumping during movement
- Respiratory pump
- Functional venous valves
- Venoconstriction (↔ Sympathetic stimulation)
- Circulating blood volume

EFFECTS OF EXTERNAL PRESSURE ON THE VEINS

- Inspiration → ↓ Intra-thoracic pressure →
 distention of veins in the chest →
 - ↑ right atrial filling →
 ↑ stroke volume from right ventricle
 - ↓ Left atrial filling →
 ↓ stroke volume from left ventricle

- Expiration causes opposite effects
- *The differences cancel out in one respiratory cycle.*
LECTURE SUMMARY

I. Circulatory system: Structure vs Function

II. Determinants of blood flow & resistance

III. Determinants of blood pressure

IV. Venous blood flow